“Mixed” Meshless Time-Domain Adaptive Algorithm for Solving Elasto-Dynamics Equations
نویسندگان
چکیده
A time-domain adaptive algorithm was developed for solving elasto-dynamics problems through a mixed meshless local Petrov-Galerkin finite volume method (MLPG5). In this time-adaptive algorithm, each time-dependent variable is interpolated by time series function of n-order, which determined criterion in step. The high-order expanded variables bring high accuracy the domain, especially elasto-dynamic equations, are second-order PDE domain. present MLPG5 dynamic formulation, strains independently, as displacements weak form, eliminates expensive differential shape function. traditional MLPG5, both and its derivative node need to be calculated. By taking Heaviside test function, domain integration stiffness matrix avoided. Several numerical examples, including comparison our method, MLPG5–Newmark FEM (ANSYS) given demonstrate advantages presented method: (1) large step can used problem; (2) computational efficiency improved space time; (3) smaller support sizes MLPG5.
منابع مشابه
A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملA Computational Meshless Method for Solving Multivariable Integral Equations
In this paper we use radial basis functions to solve multivariable integral equations. We use collocation method for implementation. Numerical experiments show the accuracy of the method.
متن کاملUnconditionally stable meshless integration of time-domain Maxwell's curl equations
Keywords: ADI leapfrog method Meshless methods Smoothed particle electromagnetics a b s t r a c t Grid based methods coupled with an explicit approach for the evolution in time are traditionally adopted in solving PDEs in computational electromagnetics. The discretiza-tion in space with a grid covering the problem domain and a stability step size restriction, must be accepted. Evidence is given...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولKernel-Based Local Meshless Method for Solving Multi-Dimensional Wave Equations in Irregular Domain
This work explores the application of kernel based local meshless method for solving multi-dimensional wave equations in irregular domain. The method is tested for various types of boundary conditions in irregular shaped domain. The method is capable of solving multi-dimension large scaled problems in complex shaped domain.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10101722